ВТБ расширил применение Big Data для развития офисной сети

03 июня 2020

ВТБ при принятии решений об открытии и размещении дополнительных офисов использует результаты анализа обезличенных гео-данных и их последующей обработки методами машинного обучения. Соответствующая гео-аналитическая платформа является внутренней разработкой банка.

Для анализа используются данные о торговой активности, средней стоимости жилья в городах, плотности живущих и работающих в разных районах городов людей и другие. Объединить широкий периметр обезличенных данных удалось благодаря единой специализированной гео-сетке, разработанной специалистами банка для решения аналитических задач.

Применение методов машинного обучения к широкому периметру данных позволило прогнозировать спрос на те или иные банковские услуги в различных районах городов. Согласно полученным результатам, в частности, спрос на сберегательные продукты, как правило, концентрируется в центре города, а спрос на кредитные и транзакционные продукты может быть выше в спальных районах.

Таким образом, централизованная гео-аналитическая платформа позволяет системно решать задачу оптимального размещения инфраструктуры банка.

Вадим Кулик

заместитель президента — председателя правления Банка ВТБ

Применение анализа и обработки методами машинного обучения обезличенных больших данных в современном мире является одним из основных инструментов развития компаний почти во всех сферах. Созданные на основе больших данных модели помогают делать услуги банков для клиентов удобнее и более точно и индивидуально формулировать предложения сервисов и продуктов. Работа с большими данными является одним из важнейших направлений развития ВТБ в рамках стратегии, которая предполагает трансформацию банка на новой цифровой основе

Другие новости